quantale's diary

日々の数学/物理等の読書記録

Hilbert空間における完全正規直交系(CONS)の構成例(第1版)

 

Hilbert空間における完全正規直交系(CONS)の構成例(第1版)

  • date: 2020/10/02
  • author: quantale

1. 概要

Hilbert空間での具体的な完全正規直交系(CONS)の構成例を, Matlabの計算とともに示す。

2. 検証環境

3. Legendre多項式

 

(1) 多項式

 
と定める。
について関数 の概形を示す。
close all; clear; clc; % 初期化
syms t % シンボリック変数tを定義
% グラフ出力
fplot(power(t,0:4)); axis([-1.2 1.2 -1.2 1.2]); grid on;
xlabel('$t$','Interpreter','latex');
ylabel('$t^n$','Interpreter','latex');
legend('$1$','$t$','$t^2$','$t^3$','$t^4$',...
'Location','best','Interpreter','latex');
title('fig1. $x_n(t) = t^n$','Interpreter','latex');

(2) 多項式系のGram-Schmidt直交化

 
は線形独立であるから Gram-Schmidt の直交化法が適用できる。
実際に最初の5ステップを計算する。
% 変数と基本処理関数の定義
sym t; % シンボリックに変数tを定義
x = @(n) t^n; % x_n(t) := t^n
d = @(v,w) int(v*w,-1,1); % 内積計算処理
nrz = @(x) x/sqrt(d(x,x)); % L^2ノルム正規化処理
% Gram-Schmidt直交化法で最初の5項を計算
syms p0 p1 p2 p3 p4;
p0 = nrz(x(0));
p1 = nrz(x(1)-d(x(1),p0)*p0);
p2 = nrz(x(2)-d(x(2),p0)*p0-d(x(2),p1)*p1);
p3 = nrz(x(3)-d(x(3),p0)*p0-d(x(3),p1)*p1-d(x(3),p2)*p2);
p4 = nrz(x(4)-d(x(4),p0)*p0-d(x(4),p1)*p1-d(x(4),p2)*p2-d(x(4),p3)*p3);
p0 ,, p4 について簡約後, 出力
p0 = simplify(p0)
p0 = 
p1 = simplify(p1)
p1 = 
p2 = simplify(p2)
p2 = 
p3 = simplify(p3)
p3 = 
p4 = simplify(p4)
p4 = 

(3) Legendre多項式系との関係

 
Legendre多項式
を用いると先の p0 ,, p4 は
の形をしている。実際に比較すると
phi = @(n) sqrt(sym( (2*n+1)/2) )*legendreP(n,t); % phi_nとおいた。
simplify(phi(0)-p0) % phi_(0)-p0を計算
ans = 
0
simplify(phi(1)-p1) % phi_(1)-p1を計算
ans = 
0
simplify(phi(2)-p2) % phi_(2)-p2を計算
ans = 
0
simplify(phi(3)-p3) % phi_(3)-p3を計算
ans = 
0
simplify(phi(4)-p4) % phi_(4)-p4を計算
ans = 
0
となり結果は一致する。
そこで改めて
と定めると, これはからGram-Schmidt直交化により得られた正規直交系(ONS)と一致し, となる。
について関数 の概形を示す。
% グラフ出力
fplot(phi(0)); hold on;
fplot(phi(1));fplot(phi(2));fplot(phi(3));fplot(phi(4));
axis([-1.5 1.5 -1.5 1.5]); grid on; xlabel('$t$','Interpreter','latex');
ylabel('$\varphi_n$','Interpreter','latex');
legend('$\varphi_0$','$\varphi_1$','$\varphi_2$',...
'$\varphi_3$','$\varphi_4$',...
'Location','best','Interpreter','latex');
title('fig2. $\varphi_n(t):=\sqrt{\frac{2n+1}{2}}\cdot P_n(t)$',...
hold off;

(4) 完全正規直交性

 
得られた正規直交系(ONS) が完全正規直交系であることは以下のようにわかる。
区間 の点を分離すること等からStone-Weierstrassの定理([4], p.146)より ノルムについて稠密となる。ノルムについて稠密である([4], p.244)。よってで稠密となる。
一般にHilbert空間の正規直交系(ONS)について, その線形結合の全体をで表すと,
で稠密 完全正規直交系(CONS)
がいえることから(Hiai,Yanagi p.7), の完全正規直交系(CONS)を定める。

4. まとめ

 

5. 展開

 
  • 関数列にGram-Schmidtの直交化法を適用することでLaguerre(ラゲール)多項式による完全正規直交系 を構成することができる。
  • 関数列にGram-Schmidtの直交化法を適用することでHermite(エルミート)多項式による完全正規直交系 を構成することができる。

Appendix A. Note

Appendix B. Reference

 
  • [1]H.Umegaki, 情報数理の基礎 - 関数解析的展開 - , サイエンス社, 1993.
  • [2] F.Hiai, K.Yanagi, ヒルベルト空間と線形作用素, 牧野書店, 1995.
  • [3]T.Oguni, K.Kenichi, MATLAB数式処理による数学基礎, 朝倉書店, 2004.
  • [4]G.K.Pedersen, Analysis Now, Revised Printing, Springer, 1995.
  • [5]T.Kawazoe, 群上の調和解析, 朝倉書店, 2000.
  • [6]S.Mizazaki, 関数解析, 横浜図書, 第3版, 2014.